LogoLogo
Continuum Knowledge BankContinuum Applications
  • Introduction
  • Creation of Environment
    • Platform Installation
    • Axolotl Dependencies
    • setup.py objectives
      • script analysis
  • Huggingface Hub
  • Download the dataset
    • Types of Dataset Structures
    • Structuring Datasets for Fine-Tuning Large Language Models
    • Downloading Huggingface Datasets
    • Use Git to download dataset
    • Popular Datasets
    • Download cleaned Alpaca dataset
    • Template-free prompt construction
  • Downloading models
    • Phi 2.0 details
    • Downloading Phi 2.0
    • Available Models
  • Configuration for Training
  • Datasets
  • Model Selection - General
  • Phi 2.0
    • Phi 2.0 - Model Configuration
    • Phi 2.0 - Model Quantization
    • Phi 2.0 - Data Loading and Paths
    • Phi 2.0 - Sequence Configuration
    • Phi 2.0 - Lora Configuration
    • Phi 2.0 - Logging
    • Phi 2.0 - Training Configuration
    • Phi 2.0 - Data and Precision
    • Phi 2.0 - Optimisations
    • Phi 2.0 - Extra Hyperparameters
    • Phi 2.0 - All Configurations
    • Phi 2.0 - Preprocessing
    • Phi 2.0 - Training
    • Uploading Models
  • Llama2
    • Llama2 - Model Configuration
    • Llama2 - Model Quantization
    • Llama2 - Data Loading and Paths
    • Llama2 - Sequence Configuration
    • Llama2 - Lora Configuration
    • Llama2 - Logging
    • Llama2 - Training Configuration
    • Llama2 - Data and Precision
    • Llama2 - Optimisations
    • Llama2 - Extra Hyperparameters
    • Llama2- All Configurations
    • Llama2 - Training Configuration
    • Llama2 - Preprocessing
    • Llama2 - Training
  • Llama3
    • Downloading the model
    • Analysis of model files
      • Model Analysis - Configuration Parameters
      • Model Analysis - Safetensors
      • Tokenizer Configuration Files
        • Model Analysis - tokenizer.json
        • Model Analysis - Special Tokens
    • Llama3 - Model Configuration
    • Llama3 - Model Quantization
    • Llama3 - Data Loading and Paths
    • Llama3 - Sequence Configuration
    • Llama3 - Lora Configuration
    • Llama3 - Logging
    • Llama3 - Training Configuration
    • Llama3 - Data and Precision
    • Llama3 - Optimisations
    • Llama3 - Extra Hyperparameters
    • Llama3- All Configurations
    • Llama3 - Preprocessing
    • Llama3 - Training
    • Full Fine Tune
  • Special Tokens
  • Prompt Construction for Fine-Tuning Large Language Models
  • Memory-Efficient Fine-Tuning Techniques for Large Language Models
  • Training Ideas around Hyperparameters
    • Hugging Face documentation on loading PEFT
  • After fine tuning LLama3
  • Merging Model Weights
  • Merge Lora Instructions
  • Axolotl Configuration Files
    • Configuration Options
    • Model Configuration
    • Data Loading and Processing
    • Sequence Configuration
    • Lora Configuration
    • Logging
    • Training Configuration
    • Augmentation Techniques
  • Axolotl Fine-Tuning Tips & Tricks: A Comprehensive Guide
  • Axolotl debugging guide
  • Hugging Face Hub API
  • NCCL
  • Training Phi 1.5 - Youtube
  • JSON (JavaScript Object Notation)
  • General Tips
  • Datasets
Powered by GitBook
LogoLogo

This documentation is for the Axolotl community

On this page
  • Background
  • Core Purpose
  • Supported Features

Was this helpful?

Introduction

NextCreation of Environment

Last updated 11 months ago

Was this helpful?

This is Continuum's documentation for training large language models.

This training platform has been put together by a dedicated group of people, whose generosity has allowed a community to form and become able to fine tune a variety of large language models.

Background

The GitHub repository "Axolotl" provides a versatile tool designed for the fine-tuning of various AI models, specifically targeting ease of use and flexibility in handling different model configurations and architectures.

Core Purpose

Axolotl is aimed at streamlining the fine-tuning process of AI models, offering compatibility with a wide range of Huggingface models and fine-tuning techniques.

Supported Features

  • Model Support: It supports training with various Huggingface models

  • Fine-tuning Techniques: The tool supports several fine-tuning methods

  • Configuration Flexibility: Users can customise configurations using a YAML file or override settings via the CLI.

  • Dataset Compatibility: Axolotl can load different dataset formats, support custom formats, or handle user-provided tokenized datasets.

  • Integration with Advanced Tools: The tool integrates with xformer, flash attention, rope scaling, and multipacking for enhanced model performance and efficiency.

  • Multi-GPU Support: It facilitates training on single or multiple GPUs using FSDP or Deepspeed.

  • Docker Support: Axolotl can be easily run with Docker, either locally or on the cloud.

  • Experiment Tracking: It allows logging results and optionally checkpoints to WandB or MLflow.

GitHub - OpenAccess-AI-Collective/axolotl: Go ahead and axolotl questionsGitHub
Link to Axolotl GitHub Repository
Page cover image
Logo